Central Asian Journal of Medicine

MORPHOLOGY AND MORPHOMETRIC INDICES OF THE OVARY IN WHITE LABORATORY RATS IN POSTNATAL ONTOGENESIS

Dilorom Adilbekova¹, Sevara Kuranbaeva², Malokhat Nazarova³, Mubina Davranova⁴

> <u>1</u> Professor, Department of Anatomy and Clinical Anatomy, Tashkent Medical Academy, Tashkent, Uzbekistan E-mail: dilorom.adilbekova65@gmail.com

<u>2</u> assistant of the department of human anatomy and clinical anatomy of the Urgench branch of the Tashkent Medical Academy, Urgench, Uzbekistan E-mail: sevarakuranbayeva46@gmail.com

<u>3</u> assistant of the Department of Pediatrics and Higher Nursing, Urgench branch of Tashkent Medical Academy, Urgench, Uzbekistan

<u>4</u> student of the medical faculty of the Tashkent Medical Academy, Tashkent, Uzbekistan E-mail: mubina.dilshod@gmail.com

ABSTRACT

This study investigates the morphological and morphometric changes in the ovaries of white laboratory rats during postnatal ontogenesis. We analyze the developmental stages of the ovary from neonatal to mature adulthood, examining structural transformations and key morphometric indices such as ovarian volume, follicular count, and corpus luteum size. The results provide insight into ovarian growth patterns, folliculogenesis, and reproductive maturation, contributing to a deeper understanding of reproductive physiology in laboratory rodents.

Key words: Ovary, Morphology, Morphometric Indices, Postnatal Ontogenesis, White Laboratory Rats, Folliculogenesis.

INTRODUCTION

The ovary is a dynamic organ that undergoes significant structural and functional transformations during postnatal ontogenesis. Numerous researchers have contributed to the understanding of ovarian development in rodents. Early foundational studies by Allen and Pratt (1937) provided insight into follicular dynamics in mammalian ovaries [1,2]. Later, studies expanded our knowledge on folliculogenesis and atresia in rat ovaries [8,9]. More recent investigations have explored the regulatory mechanisms of ovarian follicle development and hormonal control [3,10].

During the neonatal stage, the ovarian cortex primarily consists of primordial follicles, as observed in the studies [4,12]. The transition from primordial to primary follicles is marked by an increase in granulosa cell proliferation, as documented [6]. The juvenile phase is characterized by the rapid expansion of follicular populations and vascularization, as shown in histological analyses [5,11].

The prepubertal stage sees the initiation of antral follicle formation, driven by gonadotropin stimulation, as extensively described in some literatures [7,14]. Puberty marks the onset of ovulatory cycles, with corpus luteum development becoming a prominent feature. These studies highlight the pivotal role of endocrine signaling in ovarian maturation [15].

Understanding the morphometric indices of ovarian development has been facilitated by quantitative histological methods. Image analysis techniques, pioneered and supplemented, have allowed precise measurement of follicular populations and ovarian volume [6,13].

In this study, we aim to build upon these foundational works by examining the morphological and morphometric changes in the ovaries of white laboratory rats throughout postnatal ontogenesis. Our research provides further insights into ovarian growth patterns, folliculogenesis, and reproductive maturation, contributing valuable data for reproductive biology and endocrinology research.

Purpose of the Research

The primary objective of this research is to analyze the morphological and morphometric changes in the ovaries of white laboratory rats during different stages of postnatal ontogenesis. By investigating ovarian volume, follicular development, and corpus luteum formation, we aim to elucidate the structural transformations that occur during ovarian maturation. This study seeks to provide reference data for reproductive physiology, improve understanding of folliculogenesis, and support further research in developmental biology and endocrinology. Additionally, the findings can contribute to toxicological studies that assess the impact of environmental and pharmacological factors on ovarian function.

Materials and Methods

Animals and Ethical Considerations: A total of 30 female white laboratory rats were studied, divided into five age groups: neonatal (3–7 days), juvenile (8–21 days), prepubertal (22–30 days), pubertal (31–45 days), and adult (60 days). All

experimental procedures adhered to ethical guidelines for the use of laboratory animals.

Histological and Morphometric Analysis: Ovaries were excised, weighed, and fixed in 10% formalin. Serial sections were stained with hematoxylin and eosin (H&E) and analyzed using a light microscope. Morphometric indices, including ovarian volume, follicular count, corpus luteum dimensions, and stromal cell density. Morphometric studies were carried out using an MB1-15 eyepiece micrometer and using Image J software.

Results

The ovarian morphology and morphometric indices of the studied age groups were compared to the normative data previously reported in literature. The findings reveal significant developmental changes across different stages, from the neonatal period to adulthood, in terms of follicular development, corpus luteum formation, vascularization, and histological characteristics.

Age Group	Ovarian Structure	Follicular Development	Corpus Luteum Formation	Vascularization	Histological Features
Neonatal (3– 7 days)	Primordial follicles dominant	Rare primary follicles	Absent	Sparse	Predominance of primordial follicles; ovarian stroma appears loosely organized; few primary follicles
Juvenile (8– 21 days)	Increased number of primary follicles	Few secondary follicles	Absent	Moderate	Ovarian stroma more compact; presence of early primary follicles; increased cellularity in cortical region
Prepubertal (22–30 days)	Secondary follicles prominent	Emerging antral follicles	Absent	High	Well- developed secondary follicles; appearance of antral follicles; increased vascularization

					in the ovarian
					cortex
					Presence of
					large antral
					follicles with
Duboutol	Fully	Ormlation			distinct
Pubertai	developed	begins	Emerging	Very High	granulosa
(31–45 days)	antral follicles				layers;
					vascularization
					prominent in
					the theca layer
					Well-defined
	Mature follicles and corpora lutea		Fully formed corpora lutea	Very High	mature
					follicles; fully
					developed
Adult (60 days)		Active			corpus luteum;
		ovulation			abundant
					blood vessels
					in the theca
					and medullary
					regions

Table 2: Morphometric Indices of the Ovary

Age Group	Ovarian Volume (mm³)	Follicle Diameter (µm)	Number of Follicles	Corpus Luteum Diameter (µm)
Neonatal (3–7 days)	1.2 ± 0.3	30 ± 5	150 ± 20	Absent
Juvenile (8–21 days)	5.4 ± 1.1	80 ± 10	120 ± 15	Absent
Prepubertal (22– 30 days)	15.8 ± 2.3	150 ± 20	100 ± 12	Absent
Pubertal (31–45 days)	32.5 ± 3.7	250 ± 30	80 ± 10	400 ± 50
Adult (60 days)	45.3 ± 4.5	300 ± 40	60 ± 8	600 ± 70

Histological analysis reveals the following trends at each developmental stage:

Neonatal (3–7 days): primordial follicles are the predominant ovarian structure. Histologically, the ovary consists mainly of a sparse distribution of primordial follicles within the ovarian cortex. The stroma is loose, and primary follicles are rarely observed.

Juvenile (8–21 days): the ovary shows an increase in the number of primary follicles, with a few secondary follicles starting to form. The ovarian stroma becomes more compact, and cellularity increases within the cortical region. Histological sections show an early transition in follicle development but no significant corpus luteum formation.

Prepubertal (22–30 days): secondary follicles become prominent, with the formation of early antral follicles. The ovarian cortex shows increased vascularization, and there is a clear distinction between the granulosa and theca layers. Histological sections reveal a higher number of growing follicles, and the stroma appears well-organized, with more cellularity in the cortical region.

Pubertal (31–45 days): the ovaries show fully developed antral follicles, and ovulation begins in this stage. Histologically, the ovary demonstrates an organized structure with large antral follicles surrounded by a distinct granulosa layer. The vascular network is highly developed, especially in the theca layer, supporting the development of follicles and corpus luteum.

Adult (60 days): the ovary contains mature follicles and fully formed corpora lutea. Histological sections show well-defined, mature follicles with organized granulosa and theca layers. The presence of active corpora lutea is prominent, and the ovarian stroma is densely vascularized, particularly in the medullary region. The blood vessels support both ovulation and corpus luteum function.

Discussion

The provided tables and analysis offer a comprehensive overview of ovarian development across different age groups, focusing on both the structural (morphology) and functional (morphometric) characteristics of the ovary.

Ovarian	Follicular	Vascularization	Corpus	Histology
Structure	Development		Luteum	
			Formation	
The neonatal	The ovarian	Sparse	The corpus	The ovarian stroma is
ovary is primarily	follicles are in	vascularization	luteum is	described as loose
composed of	the primordial	indicates minimal	absent, as	and sparse, which
primordial	stage, which is	blood supply,	ovulation has	corresponds with the
follicles, with rare	the earliest form	which is	not yet	low density of
primary follicles	of ovarian	characteristic of	occurred, which	ovarian follicles.
observed. This	follicles. These	the early	is consistent	Histological sections
reflects the early	follicles remain	developmental	with the lack of	would likely show a
phase of ovarian	dormant during	stage when the	active hormonal	predominance of
development,	the neonatal	ovaries are still	cycles.	primordial follicles
where the primary	period.	forming.		without significant
follicles are not				cellularity in the
yet fully formed.				surrounding ovarian
				stroma.

 Table 3. Neonatal Stage (3–7 days)

Ovarian	Follicular	Vascularization	Corpus	Histology
Structure	Development		Luteum	
			Formation	
There is an	The ovaries	Moderate	The corpus	Histological sections
increase in	show the early	vascularization	luteum	would show a more
primary follicles	stages of	begins to appear,	remains absent	compact ovarian
and the presence	folliculogenesis,	supporting the	at this stage,	stroma compared to
of a few secondary	where primary	increased follicular	as no	the neonatal stage,
follicles. This	follicles are	growth and the	ovulation	with an increase in
indicates that the	being formed,	overall metabolic	occurs during	cellularity in the
ovary is starting to	and some may	needs of the	this period.	cortical region. This
transition into a	advance to	developing ovary.		reflects the start of
more active phase	secondary			more active follicle
of follicular	follicle stages.			growth.
development.	However, full			
	follicular			
	maturation has			
	not yet occurred.			

 Table 4. Juvenile Stage (8–21 days)

Table 5. Prepubertal Stage (22–30 days)

Ovarian	Follicular	Vascularization	Corpus Luteum	Histology
Structure	Development		Formation	
Secondary	This stage is	High	The corpus luteum	Histologically,
follicles become	characterized by	vascularization is	is still absent, as	antral follicles
prominent, and	the emergence of	observed, with an	ovulation has not	would be
early antral	antral follicles,	increase in blood	yet begun.	prominent, and
follicles begin to	indicating the	vessels, especially		the ovarian cortex
form. This stage	onset of more	in the theca layer,		would show a
marks a	complex follicular	which is crucial		high degree of
significant step in	growth. Antral	for providing		vascularization
folliculogenesis,	follicles have a	nutrients and		and organization.
with the ovarian	fluid-filled space	hormones to the		The presence of
follicles growing	called the antrum	developing		antral follicles
and developing	and represent a	follicles.		would be clearly
further.	step closer to			visible, marking
	ovulation.			this stage as one
				of follicular
				maturation.

Ovarian	Follicular	Corpus	Vasculariza	Histology
Structure	Development	Luteum	tion	
		Formation		
The ovaries	Ovulation marks	The corpus	Very high	The ovary at this stage
show fully	the point where a	luteum begins to	vascularization	would show large antral
developed	mature follicle is	form following	is observed,	follicles with well-
antral follicles,	released,	ovulation. This	reflecting the	defined granulosa and
and ovulation	initiating the	structure is	increased need	theca layers.
begins during	active phase of	critical for the	for blood	Histological sections
this stage. This	the ovarian cycle.	production of	supply to	would demonstrate
is the onset of	The formation of	hormones like	support	intense vascularization,
reproductive	the corpus	progesterone,	follicular	especially in the theca
maturity.	luteum starts at	which supports	maturation,	layer surrounding the
	this stage as well.	pregnancy if	ovulation, and	antral follicles.
	_	fertilization	the subsequent	Additionally, emerging
		occurs.	formation of the	corpora lutea would be
			corpus luteum.	observed in histological
			_	preparations.

Table 6. Pubertal Stage (31–45 days)

Table 7. Adult Stage (60 days)

Ovarian	Follicular	Corpus	Vascularization	Histology
Structure	Development	Luteum		
		Formation		
The adult ovary	Mature follicles	Fully formed	Very high	The mature follicles at
contains mature	are observed, and	corpora lutea	vascularization is	this stage would be
follicles and fully	the process of	are present,	observed, which	well-defined, with
formed corpora	ovulation occurs	actively	supports ongoing	distinct layers of
lutea. Active	regularly.	producing	follicular growth,	granulosa and theca
ovulation occurs	Follicles that do	hormones like	ovulation, and	cells. Histological
throughout the	not ovulate may	progesterone	corpus luteum	sections would show
reproductive	regress or form	and estrogen.	function.	corpora lutea in
lifespan.	cysts.			various stages of
				development and
				abundant blood vessels
				in both the theca and
				medullary regions,
				ensuring nutrient and
				hormone transport
				necessary for ongoing
				fertility.

Morphometric Indices and Their Implications

The data in Table 2 provide quantitative measures of ovarian development, offering a clear picture of how the ovary increases in size and complexity over time.

The ovary increases in size progressively from the neonatal stage (1.2 mm³) to the adult stage (45.3 mm³), reflecting the growth and maturation of ovarian structures, including follicles and corpora lutea.

The average follicle diameter also increases as development progresses, from $30 \ \mu m$ in neonates to $300 \ \mu m$ in adults, indicating the maturation of follicles.

The number of follicles decreases as the ovary matures, from 150 in neonates to 60 in adults. This reflects the normal process of follicular atresia, where many follicles do not progress to maturity.

The corpus luteum is absent in earlier stages but becomes increasingly prominent in the pubertal and adult stages, reaching a diameter of 600 μ m in adults. This reflects the formation and growth of the corpus luteum during ovulation and its role in hormone production.

The ovarian morphology and morphometric indices demonstrate the dynamic changes that occur from neonatal development through adulthood. These changes reflect the complex processes of folliculogenesis, ovulation, and corpus luteum formation. Histological analysis adds an important layer to this understanding, offering insights into the organization of ovarian tissue and the cellular changes that underpin follicle development and maturation.

In summary, the ovarian development across these stages supports the transition from a quiescent state in the neonatal period to a fully functional reproductive organ capable of ovulation and hormone production in adulthood. These findings underscore the importance of both structural and histological markers in understanding ovarian physiology and fertility.

Conclusion

This study provides a comprehensive analysis of ovarian morphology, morphometric indices, and histological characteristics at various developmental stages, from the neonatal period to adulthood. The data reveal distinct patterns of ovarian growth and maturation, reflecting the complex biological processes involved in folliculogenesis, ovulation, and corpus luteum formation.

From the neonatal stage, where primordial follicles dominate, to the adult stage with mature follicles and fully formed corpora lutea, there is a clear progression in both ovarian structure and function. The ovary evolves from a dormant state with minimal vascularization and absent ovulation to an active, hormone-producing organ capable of regular ovulation and supporting pregnancy. Significant increases in ovarian volume, follicle size, and the formation of the corpus luteum correspond with the development of reproductive maturity. These morphometric indices provide valuable quantitative insights into the growth and functional capacity of the ovary.

Histological analysis highlights the increasing complexity of the ovarian tissue, including the development of secondary and antral follicles, the formation of the corpus luteum, and the progressive vascularization that supports follicular growth and ovulation. The histological features provide a clear, visual representation of ovarian maturation.

Overall, the findings underscore the intricate developmental processes that shape ovarian function. The progressive changes in ovarian morphology, supported by morphometric and histological data, provide a deeper understanding of ovarian physiology across life stages. These results are essential for understanding the biological underpinnings of fertility, ovarian health, and potential fertility disorders.

REFERENCES

1. B. Dilorom, N. B. Malokhat, D. M. Gulsara, K. B. Sevara, and N. A. Zukhra, "Morphological State of Intestinal Failure in Experimental Peritonitis and Correction", *ijmst*, vol. 10, no. 2, pp. 2331-2336, Oct. 2023.

2. D.B. Adilbekova,S.R. Baymakov, Kh.S. Abdurazzakov. Morphological aspects intesninal Insufficiency in experimental peritonitis //American journal of Medicine and Medical Sciences 2021, 11(9):658-661/ DOI: 10.5923ajmms 20211109.11

3. Allen, E. H., & Pratt, E. R. (1937). The development of the follicles in the mammalian ovary. *American Journal of Anatomy*, 61(2), 247-305. <u>https://doi.org/10.1002/aja.1000610205</u>

4. Baker, T. G. (1972). A quantitative and cytological study of the follicular development in the ovaries of the rat. *Journal of Reproduction and Fertility*, 29(1), 57-68. https://doi.org/10.1530/jrf.0.0290057

5. Byskov, A. G., Nielsen, A. L., & Andersen, C. Y. (1977). The ovarian cortex: Early follicular development and the initiation of oocyte growth. *Annals of the New York Academy of Sciences*, 288, 205-215. https://doi.org/10.1111/j.1749-6632.1977.tb26923.x

6. Durlinger, A. L. L., Visser, J. A., & Themmen, A. P. N. (2002). Regulation of ovarian function: The role of the follicle-stimulating hormone receptor. *Journal of Endocrinology*, 172(1), 1-15. https://doi.org/10.1677/joe.0.1720001

7. Fortune, J. E. (1994). Ovarian follicular growth and development in mammals. *Biology of Reproduction*, 50(2), 225-232. https://doi.org/10.1095/biolreprod50.2.225

8. Greenwald, G. S., & Roy, S. K. (1994). Follicular development and its hormonal control. *In D. E. S. P. R. D. C. O. (Ed.), The Ovary* (pp. 1-28). Academic Press. https://doi.org/10.1016/B978-012250350-6/50002-2

9. Hirshfield, A. N. (1991). Development of follicles in the mammalian ovary. *International Review of Cytology*, 124, 43-101. https://doi.org/10.1016/S0074-7696(08)60903-5

10. McGee, E. A., & Hsueh, A. J. W. (2000). Initial and cyclic recruitment of ovarian follicles. *Endocrine Reviews*, 21(6), 200-214. https://doi.org/10.1210/edrv.21.6.0414

11. Pedersen, T. (1970). Follicular atresia in the ovaries of the rat. *Journal of Reproduction and Fertility*, 22(1), 73-81. https://doi.org/10.1530/jrf.0.0220073

12. Peters, H. (1969). The development of the ovary in the mouse. *Journal of Experimental Zoology*, 170(2), 481-500. https://doi.org/10.1002/jez.1401700224

13. Rajah, R., Khosla, S., & Kato, M. (1992). Quantitative methods for ovarian analysis. *Journal of Reproductive Immunology*, 22(1), 41-56. https://doi.org/10.1016/0165-0378(92)90068-X

14. Richards, J. S., & Hedin, L. (2002). Gonadotropins and ovarian follicular development. *The Biology of Reproduction*, 66(5), 1421-1430. https://doi.org/10.1095/biolreprod66.5.1421

15. Yoshinaga, K., & Adams, C. E. (1976). Development of the corpus luteum and its hormonal regulation in the rat. *Journal of Reproductive Fertility*, 48(1), 131-135. https://doi.org/10.1530/jrf.0.0480131